C2CNT

Company
6-10
Calgary, Canada
Calgary, Canada

Company Description

The C2CNT team focus is a comprehensive solution to climate change, a principal challenge facing the planet today. In this industrial age, massive quantities of greenhouse gases, principally carbon dioxide, have been released into our atmosphere through the combustion of fossil fuels to meet humankind's industrial, transportation and energy needs. These greenhouse gases trap infrared heat increasing the temperature of the planet (global warming) at an accelerating rate. Climate change causes species extinction. As many as half the species on the planet face extinction this century if climate change is not abated. Climate change is causing sea-level rise, which is already threatening disappearance of low-lying countries, glaciers and icebergs, along with causing interior flooding, drought, famine, disease, hurricanes, increased incidence and strength of tornados, communication, power and transportation disruptions, and causing wide-spread increasing economic cost to both developed and under developed countries throughout the world. At George Washington University we’ve discovered the inexpensive transformation of the greenhouse carbon dioxide into a widely useful and highly valued product. In our C2CNT process, CO2 is directly transformed to hollow nanofibers, “carbon nanotubes,” products with remarkable properties of conductivity, nanoelectronics, higher capacity batteries, flexibility, with greater strength than steel and widespread use as carbon composites. The conversion of CO2 to pure carbon nanotubes provides the most compact form to capture carbon dioxide and mitigate climate change. The market for carbon composites provides lighter weight alternatives to metals, and is used today in the Boeing Dreamliner, high end sport cars, and athletic equipment. The market is experiencing an explosive growth comparable to the historical start of the plastic industry. Previously carbon nanofibers were made by expensive processes such as chemical vapor deposition or polymer pulling and could not be made from CO2. Our C2CNT team is rapidly scaling-up our new chemistry which directly converts CO2 at high rate to carbon nanotubes using low cost materials. The C2CNT team is committed to reversing the rapid anthropogenic buildup of greenhouse gases, and perceive CO2 not as a pollutant, but rather CO2 as a useful resource. We are working to incentivize CO2 removal from the power, industry and transportation sectors by rapidly and efficiently transforming CO2 into a valuable product.

Email me jobs from C2CNT

Daily

Email me jobs from C2CNT

Daily